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Introduction



Refactoring – what is this?

Refactoring is a popular technique for 
improving the structure

of existing programs while 
maintaining their behavior.



JavaScript? Why?

Refactoring for statically typed languages like 
Java is well developed.

Refactoring tools for JavaScript are less mature 
and not always can ensure that program 

behavior is preserved.



How it should be done

Refactoring is the process of 
improving the structure of software

by applying behavior-preserving 
program transformations.

These transformations are typically 
identified by a name.



How it should be done

They also have their preconditions 
under which they are applicable and 

set of algorithm steps how to do them.

If you apply them manually, you are 
probably doing it wrong!



Approaches to refactoring for 
dynamically typed languages

The most well-developed 
approach can be found in 
Smalltalk Refactoring 

Browser.

It relies on runtime 
instrumentation and 

existence of test suite that 
ensures that behaviour is 

preserved.

The aim of that paper was 
to develop refactoring tool 
without extra test suite.



Small example – there will be 
more...

Lets say, that we have class C, and field 'f' in it. 
We would like to rename 'f' to 'g'...

In Java it is quite simple... For example when 
our refactoring tool see 'e.f', it checks type of 
'e'. If it is C, it changes 'e.f' to 'e.g'... Simple...



Small example – there will be 
more...

Properties in JavaScript are only associated
with dynamically created objects and are 

themselves dynamically created upon first 
write.

Further complications arise from other dynamic 
features of JavaScript, such as 

● the ability to dynamically delete properties
● change the prototype hierarchy
● reference a property by specifying its name as 
a dynamically computed string



Major contributions of the paper

1) Present a framework for specifying and 
implementing JavaScript refactorings, based on a set 
of analysis queries on top of a pointer analysis.

2) Give detailed specifications of JavaScript-specific 
refactorings expressed using the framework.

3) Experimentally validate presented approach by 
exercising a prototype implementation of the framework 
and the refactorings on a set of JavaScript benchmarks.



Examples



A library that 
defines
two shapes: 
circles and 
rectangles.



A client application that uses the library to draw a 
number of such shapes of randomly chosen sizes 

at random coordinates in the browser.



As a prototype-based language, JavaScript does not have
built-in support for classes. Instead, they are commonly

simulated using constructor functions.

In the library we mentioned before there are two 
constructor functions: Circle and Rectangle. They allow a 

programmer to create those shapes by simple 'new' 
operator.



Every object created by invoking 'new 
Rectangle(...)' has an internal prototype 

property, which references the object stored in 
Rectangle.prototype. When a property x is 

looked up in this object, but the object does not 
itself define property x, the internal prototype is 

searched for x instead.



Every rectangle has both a getArea and a
drawShape property, the latter defined in the 
object itself, the former defined in its internal 

prototype. But while every rectangle has its own 
copy of drawShape, there is only one copy of 

getArea, which is shared by all rectangles.



shapes[i].getArea() (line 45) will invoke 
function found in internal prototype of object 

shapes[i], but its receiver object is shapes[i] 
itself. Thats why i.e. this.width will refer to 

property width of right object.



RENAME

● The property this.x (line 2) in Circle can be renamed 
to xCoord. 

● This requires updating the property expression this.x 
(line 8) to this.xCoord as well.

● However, there is no need to rename the property 
expression this.x (line 14), because the properties 
accessed on lines 8 and 14 must reside in different 
objects. 

● If we decide to rename this.x (line 14) to 
this.xCoord, then the subsequent property 
expression on line 21 must also be changed to 
this.xCoord.



RENAME

● Refactoring the property expression this.drawShape 
(line 6) in Circle to this.draw requires that the 
property expression this.drawShape (line 19) in 
Rectangle is refactored to this.draw as well

● The receivers in the expression s.drawShape(gr) 
(line 33) can be bound to a Circle or a Rectangle 
object, and therefore the methods have to be 
renamed consistently. 

● Circle and Rectangle are completely unrelated; in 
particular there is no prototype relationship.



Key correctness requirement

name binding preservation — each use of a
property in the refactored program should refer 
to the same property as in the original program.





RENAME

● Applying RENAME to this.radius (line 4) is problematic 
because of the for-in loop and dynamic property expression in 
dble.

● In general, dynamic property expressions may use values 
computed at runtime, which would spoil any static analysis.

● In order to ensure that dynamic property expressions do not 
cause changes in program behavior when applying the 
RENAME refactoring, presented approach disallow the 
renaming of any property in any object on which properties 
may be accessed reflectively. 

● Hence, in this example, it is disallowed to rename any of the 
properties in Circle objects.



RENAME

● The names of the drawShape methods in 
Circle and Rectangle must be kept consistent, 
because the call on line 63 may resolve to 
either one of these

● Since it is now disallowed to rename any of  
the properties in Circle, it must be also 
disallowed to rename drawShape in 
Rectangle.

●The remaining properties of Rectangle, i.e., x, 
y, width, and height can still be renamed.



ENCAPSULATE PROPERITY

This refactoring can be used for making a field 
private and introducing new getters and setters 

to it. Not in JavaScript...

A commonly used technique uses local 
variables of constructor functions to simulate 

private properties.





ENCAPSULATE PROPERITY

Lets try to encapsulate radius field in Circle.

There is a problem! dble function tries to 
double it but it won't be found!

What is more, it will copy drawShape but 
copied function will continue to refer to original 

Circle!



Another short ENCAPSULATE 
PROPERITY example

Suppose that we want to apply 
ENCAPSULATE PROPERTY to the width 

property of Rectangle.

The original version of the program draws a red
100-by-200 rectangle. However, if width is 
encapsulated a red 300-by-200 rectangle is 

drawn instead.



EXTRACT MODULE



EXTRACT MODULE - problems

Observe that choosing the name shapes for the new 
module is problematic because a variable with the 

same name is already declared.

If the refactoring was performed anyway, the shapes 
“module” would be overwritten, and the constructor 

calls (lines 167 and 171) would cause runtime errors 
since the empty array shapes does not have 

properties Circle or Rectangle.



A Framework for Refactoring with
Pointer Analysis



As the foundation of the framework, the paper 
assume a pointer analysis that defines a finite 
set L of object labels such that every object at 

runtime is represented by a label.
 

It is assumed that L includes labels to represent 
environment records.

Basic queries



Basic queries

For technical reasons, it is required that if an 
object label represents an object allocated by a 

particular 'new' expression, then all objects 
represented by that label are allocated by that 

expression.

Similarly, a single object label cannot represent 
two function objects associated with different 

textual definitions.



Basic queries

We say that a set L of object labels 
over-approximates 

a set O of runtime objects if every object o ∈ O 
is represented by some  ∈ L. 

For brevity, we will use the term function
definition to mean “function declaration or 

function expression” and invocation 
expression to mean “function call expression 

or new expression”.



Basic queries

The pointer analysis should provide the following 
queries:

objects For any expression e in the program,    
objects(e)⊆ L over-approximates the set of objects to 
which e may evaluate, including objects arising from 

ToObject conversion. 

For a function declaration f, objects(f) over-approximates 
the set of function objects that may result from evaluating f.



Basic queries

scope For any function definition or catch clause e, 
scope(e)⊆L over-approximates the set of environment 
records corresponding to e at runtime. We additionally 

define scope(e) := objects(e) for any 'with' expression e.

proto For any object label , proto() ⊆L 
over-approximates the possible prototype objects of the 

runtime objects  represents. We write proto+(L) for the set 
of transitive prototypes of L⊆L as determined by this 

query.



Basic queries

props For any object label , props()⊆L 
over-approximates the set of objects that could be stored 

in properties of  (excluding internal properties).

mayHaveProp,mustHaveProp For any object label  and 
property name p:

● mayHaveProp(, p) should hold whenever any object 
represented by  may have a property p

● mustHaveProp(, p) should only hold if every object 
represented by  has a property p at all times (for 
instance if  represents an environment record and p is a 
local variable declared in that environment).



Basic queries

arg, ret For an object label  and a natural number i, arg(, i)
over-approximates the set of objects that may be passed
as the ith argument (or the receiver in case i = 0) to any 
function labelled by . Similarly, ret() over-approximates

the set of objects that may be returned from .

builtin Given the name n of a built-in object, builtin(n) returns 
the corresponding object label. The object label of the global 

object will be denoted as global.

We also define
apply := builtin(Function.prototype.apply)
bind := builtin(Function.prototype.bind)
call := builtin(Function.prototype.call)



Visited and base objects

In JavaScript while evaluating i.e. 'e.x' property 
x is looked up in object o_1 that e evaluates to. 

If it is not found, its prototype object o_2 is 
examined... And so on, up to o_n. It can be 

found in o_n – than o_n is called a base object 
of the lookup. If it is not found – lookup returns 

undefined value.

o_1, o_2, … ,o_n are visited objects.



Visited and base objects

access refer to both identifier references (like
r on line 4) and property expressions, including

both fixed-property expressions like s.drawShape and 
dynamic ones like nc[a] on. Identifier references and 

fixed-property expressions are called named accesses.



Visited and base objects

possiblyNamed possiblyNamed(p) over-approximates all 
accesses in the program that possibly have name p in 

some execution.

definitelyNamed definitelyNamed(p) under-approximates 
accesses that definitely have name p in every execution.



Visited and base objects

For a property expression e.x, for instance, 
visited(e.x) can be computed as the smallest set 

L
v
 ⊆L satisfying the following two conditions:

● objects(e)⊆L
v
;

● if e.x is in rvalue position, then for every  ⊆ L
v
 

with ¬mustHaveProp(, x) we must have 
proto()⊆L

v
.



Visited and base objects

To over-approximate the set of base objects, we first 
define a filtered version of visited as follows:

visited(a, x) := { ∈ visited(a) | mayHaveProp(, x)} 

This discards all object labels that cannot possibly have a 
property x from visited(a). For a named access a with 
name x in rvalue position, we then define base(a) := 

visited(a, x), whereas for a dynamic property access or an 
access in lvalue position we set base(a) := visited(a).



Related Accesses

We'll call two accesses a1 and a2 directly 
related if their base object may be the same 

and they may refer to the same property name.

The set related(a1) of accesses related
to a1 is computed as the smallest set R 

satisfying the following two closure conditions:
● a1 ∈ R; 
● for every a∈R, if a' is an access such that a 
and a' are directly related, then also a'∈R.



Initializing functions

A function initializes an object o if it is invoked 
precisely once with that object as its receiver,
and this invocation happens before any of o’s 

properties are accessed.

Lets define an over-approximation of the set of 
possible callees of an invocation expression c 
by callees(c) := objects(c

f
) where c

f
 is the part 

of c containing the invoked expression.



Initializing functions
Given a function definition f, an under-approximation 

initializes(f) of the set of objects that f initializes can be 
determined by ensuring the following:

f is only invoked through new, that is:
● No function/method call c has 

callees(c) ∩ objects(f) ≠⊘
● f is not invoked reflectively, i.e., 

args(apply, 0)∩ objects(f) = ⊘,
and similarly for bind and call.

For any new expression n with
callees(n) ∩ objects(f) ≠⊘

we have
callees(n) ⊆ objects(f)

This ensures that n definitely calls f.



Initializing functions

If both conditions hold, f initializes all its 
receiver objects, so we can set 

initializes(f) := ∪
 ∈objects(f)

 arg(, 0); 

Otherwise, we conservatively set
initializes(f) := ⊘.



Well-scopedness

A function f is well-scoped in a function g if f is 
defined within g and whenever an execution of 

g on some receiver object o evaluates
the definition of f, yielding a new function object 

f
0
, then this implies that f

0
 is always invoked 

with o as its receiver.

If g additionally initializes all objects on which it 
is invoked, then f is guaranteed to behave like a 

method on these objects.



Well-scopedness example

The function stored in a.f is not well-scoped in A: the 
receiver of A at the point where the function is defined is 
a, yet when it is called through b.f the receiver object is b.



Some more queries

● wellscoped(f, g) - For a function definition 
node f, wellscoped(f,g) holds if f is well-
scoped in g.

● intrinsic(, p) holds whenever p is an intrinsic 
(i.e. length, src) property on an object 
labelled by .

● reflPropAcc() holds whenever a property of 
an object labelled by  may be accessed 
reflectively by a build-in function.



RENAME

Input A named access a and a new name y.

Overview The refactoring renames a and its related accesses
to y.

Definitions Let B := ∪
r ∈related(a)

 base(r); this labels set of
all objects that are affected by the renaming. Let x be the
name part of the access a.



RENAME

Transformation
Rename every access in 
related(a) to y.



ENCAPSULATE PROPERITY
Input A fixed-property expression a.

Overview This refactoring identifies a function c that initializes all base 
objects of a and its related accesses, and turns the property accessed by a 
into a local variable of c. Any accesses to the property from within the 
function c can be turned into accesses to the local variable if they happen
from inside well-scoped functions; otherwise they might refer to the wrong 
variable. Accesses from outside c are handled by defining getter and setter 
functions in c and rewriting accesses into calls to these functions. The 
preconditions identify a suitable c, determine how to rewrite accesses, and 
check for name binding issues.

Definitions Let x be the name part of a, and let g and s be
appropriate getter and setter names derived from x.

Let B := ∪
r ∈related(a)

 base(r); this is the set of objects

whose properties named x we want to encapsulate.



ENCAPSULATE PROPERITY



ENCAPSULATE PROPERITY

Transformation 

Insert a declaration var x into c. Insert a 
definition of the getter function into c if A

g
≠⊘, 

and similarly for A
s
 and the setter function. 

Replace accesses in A
i
 with x, accesses in A

g
 

with invocations of the getter, in A
s
 with 

invocations of the setter.



EXTRACT MODULE

Input Contiguous top-level statements 
s_1, . . . , s_m containing a set 
P = {p_1, . . . , p_n} of identifiers to extract and
an identifier M to be used as module name.



EXTRACT MODULE



EXTRACT MODULE
Transformation 

Replace s_1, . . . , s_m with 
the definition of module M 
as shown two slides before; 
qualify accesses in Q with 
M.



Implementation



Implementation – plug-in to 
Eclipse

● Derive a flow graph from source code.
● Create a def-use graph (it abstracts away 

control flow and with statements) from flow 
graph.

● Run a pointer analysis on it.
● For context sensitivity object sensitivity is 

used with heap specialization and a simple 
widening function.

● Several build-in functions are supported.
● HTML DOM is modelled with some variables 

like document initialized to point to it.



Evaluation



Q1: How often is a refactoring rejected because its 
preconditions are too conservative?

Q2: How often is a refactoring rejected because a derived
query is defined too conservatively?

Q3: How often is a refactoring rejected because of 
imprecision in the underlying pointer analysis?

Q4: How often does RENAME refactoring give a different
outcome than syntactic search-and-replace as performed

in syntax-directed editors?

Evaluation



Evaluation

50 JavaScript programs, 300 to 1700 lines of code each.

On a 3.0 GHz PC, each benchmark is analyzed in less than
4 seconds using 256 MB memory.



RENAME

RENAME leads to smaller source code transformations than 
search-and-replace in about 25% of the cases. Of the 
refactoring attempts that were not justifiably rejected, it issues 
spurious warnings in only 6% of the cases. The spurious 
warnings are all caused by imprecision in the pointer analysis.



ENCAPSULATE PROPERTY

The tool is able to handle about 85% of the encapsulation 
attempts satisfactorily (not counting the justifiably rejected 
attempts). The remaining 15% are caused by, in about equal 
parts, restrictions of the specification and imprecision of the 
pointer analysis.



EXTRACT MODULE (1)

In this experiment, for every benchmark, the code in each HTML script 
element was extracted into its own module. In the case of standalone
benchmarks source files were chosen as the unit of modularization 
instead.

All failures are justified – there were problems with events handling.



EXTRACT MODULE (2)

In the second experiment, that was manually determined a suitable 
modularization for a subset of benchmarks and used our tool
to perform it.

This time problems also were connected with event handling – that's 
why are justified.



Summary

Q1: Rejections due to rigid preconditions 

Spurious rejections resulting from overly 
conservative preconditions are not very 

common: this happens in 35 out of (510-82) 
applications (8.2%) of ENCAPSULATE 

PROPERTY, and not at all for RENAME and 
EXTRACT MODULE.



Summary

Q2: Rejections due to derived queries 

The derived queries are always sufficiently 
precise in all experiments. For instance, 

ENCAPSULATE PROPERTY needs to prove 
well-scopedness for 28 functions, and all of 
them are indeed shown to be well-scoped.



Summary

Q3: Rejections due to imprecise pointer 
analysis 

Spurious rejections resulting from imprecision 
of the pointer analysis occur occasionally: 669 

of 16612−5250 applications (5.9%) of RENAME 
and 30 of 510−82 applications (7.0%) of 

ENCAPSULATE PROPERTY are rejected for 
this reason; and none for EXTRACT MODULE.



Summary

Q4: Improvement over naive search-and-
replace 

For 393 out of 1567 groups of accesses that 
must be renamed together (25%), RENAME 

avoids some of the unnecessary modifications 
performed by AST-level search-and-replace.



Summary

Overall, the results of evaluation are 
promising. 

Most attempted refactorings are performed 
successfully, and when the tool rejects a 
refactoring it mostly does so for a good

reason.



Related works

To find out about related works I highly 
recommend reading chapter 7 of this paper. 

There are a lot of interesting information 
connected with field of refactoring.

Thinking about refactoring started in early 
1990s. Since then people focused on creating 

automated refactoring tools...



Conclusion

● In this paper authors showed working 
framework for JavaScript refactoring.

● Results of testing are very promising.
● If framework refuses to refactor code, it 

usually makes it for a good reason.

● Authors are going to keep working on this 
problem. They are going to adapt their ideas 
to other dynamically typed languages.



Bibliography

● All of materials used in this presentation are 
available here: 
http://www.brics.dk/jsrefactor/index.html

● You can find there pdf document with article 
(for free), another pdf with technical details 
about implementation and ready Eclipse 
plug-in.

● Thank you for your attention.

http://www.brics.dk/jsrefactor/index.html

